2018年论坛学术报告

[数学论坛]How to Survive in Machine Learning Era: Some Recent Lessons
发布日期:2018-06-18  浏览量:

报告题目 How to Survive in Machine Learning Era: Some Recent Lessons        

报告人:陈中方教授美国波多黎各大学

报告时间201862010:00-11:00        

报告地点:(老)主楼321        

报告摘要Materials design has entered the well-applauded machine learning era. In the near future, artificial systems would be able to predict materials with desired properties without human intervention and may outperform humans in various aspects. It is foreseen that many routine computational studies will be replaced by machines, which brings us a serious question, how can we survive in the machine learning era?  

In this talk, I will give some lessons learned from our recent computational design of two-dimensional nanocatalysts and boron sheets containing hyprcoordinate transition metals. If well adapted, we should be able to benefit from machine learning, which enables us to focus on more high-value and creative research. Meanwhile, we also need to prepare ourselves and retrain our students to welcome the emerging new materials prediction paradigm.        

报告人简介:陈中方教授1990年进入南开大学化学系学习,1994年获学士学位,2000年获得博士学位。随后在德国马普研究所Erlangen-Nürnberg大学和美国乔治亚大学从事博士后研究。2006年至2008年期间分别任职于美国乔治亚大学和伦斯勒理工学院。2008年秋季起任美国波多黎各大学化学系副教授,2014年起任正教授。陈中方博士研究方向为计算化学和计算纳米材料科学,注重理论与实验的紧密结合与互动。近年主要致力于石墨烯和其他二维纳米材料,纳米催化剂,和纳米材料在环境治理中的应用等理论研究工作。已经发表论文240余篇, 论文被引用超过12600次,个人h指数为59

邀请人:王鹏

 

版权所有 2010 北京航空航天大学数学与系统科学学院     地址:北京市海淀区学院路37号      邮编:100191