师资队伍

周渊您现在的位置: 首页»师资队伍»周渊

姓     名

周渊 (Yuan Zhou)(博导)

职     称

教授

所属系别

数学系

学科专业

调和分析,几何函数论

办公地点

教学区主楼308

办公电话

暂无

电子邮件

yuanzhou@buaa.edu.cn

教育背景

 Ph. D. (2010), 2008.3-2010.8, Department of Mathematics and Statistics, University of Jyväskylä, Finland.
Advisors: Professor Pekka Koskela.

Ph. D. (2009), 2004.9-2009.7, School of Mathematical Sciences, Beijing Normal University, People's Republic of China. 
Advisor: Professor Dachun Yang

B. S. (2004),  2000.8-2004.7, School of Mathematical Sciences, Beijing Normal University, People's Republic of China.

工作简历

2011.8—, Associate  Professor at Beijing University of  Aeronautics and Astronautics (Beihang University),  P. R. China.

2010.10—2011.7, Postdoc at University of Jyväskylä,  Finland.

科研项目
发表论文
[26] A. Gogatishvili, P. Koskela and Yuan Zhou, Characterizations of Besov and Triebel -Lizorkin spaces on metric measure spaces, Forum Math. (2011), DOI: 10.1515/FORM.2011.135.
[25] P. Koskela, D. Yang and Yuan Zhou, Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings, Advance in Math. 226 (2011), 3579-3621.
[24] Yuan Zhou, Hajlasz -Sobolev imbedding and extension, J. Math. Anal. Appl. 382 (2011), 577-593.
[23] D. Yang and Yuan Zhou, New properties of Besov and Triebel-Lizorkin spaces on RD-spaces, manuscripta math.134 (2011), 59-90.
[22] D. Yang and Yuan Zhou, Localized Hardy spaces H1 related to admissible functions on RD-spaces and applications to Schrödinger operators, Trans. Amer. Math. Soc.363 (2011), 1197-1239.
[21] M. Bownik, B. Li, D. Yang and Yuan Zhou, Anisotropic singular integrals in product spaces, Sci. China Math. 53 (2010), 3163–3178.
[20] L. Liu, D. Yang and Yuan Zhou, Boundedness of generalized Riesz potentials on spaces of homogeneous type, Math. Inequal. Appl. 13 (2010), 867-885.
[19] D. Yang and Yuan Zhou, Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications, Math. Ann. 346 (2010), 307-333.
[18] P. Koskela, D. Yang and Yuan Zhou, A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions, J. Funct. Anal. 258 (2010), 2637-2661.
[17] D. Yang and Yuan Zhou, Some new characterizations on spaces of functions with bounded mean oscillation, Math. Nachr. 283 (2010), 588-614.
[16] D.-C. Chang, D. Yang and Yuan Zhou, Boundedness of linear operators in product Hardy spaces and its application, J. Math. Soc. Japan. 62 (2010) 321-353.
[15] P. Koskela, D. Yang and Yuan Zhou, A Jordan Sobolev extension domain, Ann. Acad. Sci. Fenn. Math. 35 (2010), 309-320.
[14] Da. Yang, Do. Yang and Yuan Zhou, Localized BMO spaces on RD-spaces and their applications to Schrödinger operators, Commun. Pure Appl. Anal. 9 (2010), 779-812.
[13] Da. Yang, Do. Yang and Yuan Zhou, Localized Campanato spaces related to admissible functions on RD-spaces and applications to Schrödinger operators, Nogaya. J. Math. 198 (2010), 77-119.
[12] M. Bownik, B. Li, D. Yang and Yuan Zhou, Weighted anisotropic product Hardy spaces and boundedness of sublinear operators, Math. Nachr. 283 (2010), 392-442.
[11] D. Yang and Yuan Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29 (2009), 207-218.
[10] Da. Yang, Do. Yang and Yuan Zhou, Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators, Potential Analysis 30 (2009), 271-300.
[9] G. Hu, D. Yang and Yuan Zhou, Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type, Taiwanese J. Math. 13 (2009), 91-135.
[8] R. Jiang, D. Yang and Yuan Zhou, Orlicz-Hardy spaces associated with operators, Sci. China Ser. A 52 (2009), 1042-1080.
[7] R. Jiang, D. Yang and Yuan Zhou, Localized Hardy spaces associated with operators, Applicable Analysis, 88 (2009), 1409-1427.
[6] Yuan Zhou, Boundedness of sublinear operators in Herz-type Hardy spaces, Taiwanese J. Math. 13 (2009), 983-996.
[5] D. Yang and Yuan Zhou, Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms, J. Math. Anal. Appl. 339 (2008), 622-635.
[4] Yuan Zhou, Some endpoint estimates of local Littlewood-paley operators, Journal of Beijing Normal University(Natural Science), 44 (2008), 577-580.
[3] D. Yang and Yuan Zhou, Non-Gaussian upper estimates for heat kernels on spaces of homogeneous type,  Proc. Amer. Math. Soc.136 (2008), 2155-2163.
[2] M. Bownik, B. Li, D. Yang and Yuan Zhou, Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators, Indiana Univ. Math. J. 57 (2008), 3065-3100.
[1] D. Yang and Yuan Zhou, Boundedness of Marcinkiewicz integrals and their commutators in H1(Rn ×Rm), Sci. China Ser. A 49 (2006), 770-790.
教学活动

欢迎对上述某个或者多个课题感兴趣同学报考本方向的研究生.
所获奖励
社会工作
推荐链接